

The Opto-Mechanical Design of the GMT-Consortium Large Earth Finder (G-CLEF)

Poster Number: 9908-374

Mark Mueller^a, Andrew Szentgyorgyi^a, Daniel Baldwin^a, Jacob Bean^b, Sagi Ben-Ami^a, Patricia Brennan^a, J. Budynkiewicz^a, Moo-Young Chun^e, Jeffrey D. Crane^c, Harland Epps^g, Ian Evans^a, Janet Evans^a, Jeff Foster^a, Anna Frebel^f, Thomas Gauron^a, Alex Glenday^a, Tyson Hare^c, Bi-Ho Jang^e, Jeong-Gyun Jang^e, Andres Jordan^d, Jihun Kim^e, Kang-Min Kim^e, Claudia Mendes de Oliveira^h, Mercedes, Lopez-Morales^a, Kenneth McCracken^a, Stuart McMuldroch^a, Joseph Miller^a, Jae Sok Oh^e, Cem Onyuksel^a, Mark Ordway^a, Chan Park^e, Sung-Joon Park^e, Charles Paxson^a, David Phillips^a, David Plummer^a, William Podgorski^a, Andreas Seifahrt^b, Joao Steiner^h, Alan Uomoto^b, Ronald Walsworth^a, Young-Sam Yu^e

^aHarvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02140;
 ^bUniversity of Chicago, 640 S. Ellis Ave, Chicago, IL 60637;
 ^cThe Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101;
 ^dPontificia Universidad Católica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile;
 ^eKorea Astronomy and Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon, Republic of Korea
 ^fMassachusetts Institute of Technology, Department of Physics, 77 Massachusetts Avenue, Cambridge, MA 02139
 ^gUniversity of California, Lick Observatory, Santa Cruz, CA 95064
 ^hInstitute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo, Street Matão, 1226, 05508-090 Sao Paulo, Brazil
 ^fGMTO Corporation, 251 S. Lake Ave, Pasadena, CA 91101;

OVERVIEW						
• The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph tas a first light instrument for the Giant Magellan Telescope (GMT) currently under construction Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose eche precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) CLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the	that has been selected at the Las Campanas elle spectrograph with) precision goal of G- e habitable zone.					

• Stability in instruments of this type is typically affected by

Requirement Title	Requirement Statement								
Seeing Conditions	Meet requirements at GMT 75 th percentile seeing, with a full width half maximum (FWHM) of 0.79 arc seconds								
Optical Feed	Provide an Optical Feed which deploys into the telescope beam and relays light into the G-CLEF Fiber Feed System								
Flexure and Defocus Detection	Provide an instrument flexure and defocus sensing system which measures flexure- induced telescope to instrument guide and focus offsets. Send these offsets to the GMT telescope Control System for correction								
Instrument Passband	3500Å to 9000 Å simultaneous wavelength coverage								
	Optically Scrambled Precision Radial Velocity mode (PRV) with Spectral Resolution = 108,000 (Pupil Sliced)								
Measurement Modes and Spectral Resolution	High Throughput, non-scrambled PRV Mode (PRV-NS) with Spectral Resolution = 108,000 (Pupil Sliced)								
	High Throughput (HT) Mode with Spectral Resolution = 19,000								
	Medium Throughput (MT) Mode with Spectral Resolution = 35,000								
Estimated Instrument Throughput		Wavelength(nm)	HT	MT	PRV	PRV-NS			
		350	7.7%	4.9%	3.8%	4.7%			
(Includes all pre-optics and fiber		500	16.2%	10.3%	8.1%	10.1%			
run, excludes the telescope. As- sumes 75% seeing or 0.79" and a Gaussian PSF)		650	15.0%	9.6%	7.6%	9.4%			
		800	14.2%	9.0%	7.1%	8.8%			
		900	8.5%	5.4%	4.3%	5.3%			
Brightness Limit	Function with target brightness of $M_R = 6$ (or fainter)								
Atmospheric Dispersion Com- pensation	Provide on-instrument atmospheric dispersion compensation								
Operating Air Mass	Operate in all modes with air mass ≤ 2								
PRV Measurement Precision	Capable of making single PRV measurements with a radial velocity single measurement precision of $40 - 50$ cm/second with a goal of 10 cm/second.								

KEY DESIGN REQUIREMENTS

changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform.

G-CLEF on GMT's

Azimuth Platform

G-CLEF SPECTROGRAPH OPTICAL DESIGN

Emerging from the fiber feed and passing through a focal ratio converter, an f/8 beam follows the following optical path:

1.Reflected off an off-axis parabolic collimator

- 2.Reflected and dispersed from the Echelle grating
- 3.Reflected (2nd pass) off the off-axis parabolic collimator and focused
- 4.Reflected off a cylindrical Mangin fold mirror
- 5.Reflected and collimated off an elliptical transfer mirror (M2)
- 6.Red wavelengths are transmitted, Blue reflected by a dichroic into separate Blue and Red camera systems
- 7.Each band passes through separate Blue or Red cross-dispersers
- 8.Each band passes separately through a multi-lens camera (Blue and Red)
- 9.Each band is imaged by a 90 mm X 90 mm CCD (Blue and Red)

The Front End contains the following components:

Focal Plane Collimating ADC and Fiber Selector

Mangin Mirror Echelle Grating Composite Optical Bench Vacuum Chamber Interface Plate		20.0001	Thermal Soak +0.001 °C	3.33	1.18	5.4
		19.9998 19.9996 19.9995 19.9994 9.9993 Units = C	Vertical Gradient	0.22	1.47	3.2
			Lateral Gradient	5.41	4.16	7.8
			Lengthwise Gradient	0.93	0.24	

THERMAL CONTROL SCHEME

CAMERA OPTICS

Flexured Mounting and Alignment Using an OpticentricTM

REFERENCES

[1] Szentgyorgyi, A., et al., "The GMT-Consortium Large Earth Finder (G-CLEF): An Optical Echelle Spectrograph for the Giant Magellan Telescope (GMT), Proc. SPIE, 9908-76, (2016).

[2] Jacoby, G., Bernstein, R., Bouchez, A., Colless, M., DePoy, D., Espeland, B., Jaffe, D., Lawrence, J., Mar-

shall, J., McGregor, P. Sharp, R., Szentgyorgyi, A. and Walls, B., "Instrumentation Progress at the Giant Magellan Telescope project," Proc. SPIE, 9908-68, (2016).

[3] Fűrész, G. et al., "The G-CLEF Spectrograph Optical Design: An Update to the White Pupil Echelle Configuration", Proc. SPIE, 9147, (2014).

[4] Johns, M., McCarthy, et al., "Overview and status of the Giant Magellan Telescope Project", Proc. SPIE, 9906-37, (2016)

[5] Podgorski, W. A., et al., "A Novel Systems Engineering Approach to the Design of a Precision Radial Velocity Spectrograph - the GMT-Consortium Large Earth Finder (G-CLEF)", Proc. SPIE, 9147-333, (2014)
 [6] Cohen, L. M., "Effects of Temporal Dimensional Instability on the Advanced X-ray Astrophysics Facility (AXAF-I) High Resolution Mirror Assembly (HRMA)"

[7] Opticentric[™] is a product of Trioptics USA, 2223 West San Bernardino Road, West Covina, CA 91790 USA
[8] Isotech North America is located at 158 Brentwood Drive, Unit 4 Colchester, VT 05446
[9] SuperTran[™] is a product of Janis Research Company, 225 Wildwood Avenue, Woburn, MA 01801-2025

USA

[10] Menlo Systems Inc. is located at 56 Sparta Avenue, Newton, NJ 07860